
VyZX

Formal Verification of a Graphical Language

Adrian Lehmann Benjamin Caldwell Bhakti Shah Robert Rand

Department of Computer Science
University of Chicago
Presented at USCS LSD Seminar x UChicago PLRG (October 20, 2023)

The ZX Calculus...

... is a graphical language for reasoning about quantum systems

ZX diagrams are open graphs consisting of green “Z” or red “X”
“spiders” and “connections” between them

ααn m n m

The Z and X spider

Used for compilation, simulation, error correction & more

Key benefit: Diagrammatic rewrites complete & more
comprehensible than circuits or matrices

1

The ZX Calculus...

... is a graphical language for reasoning about quantum systems

ZX diagrams are open graphs consisting of green “Z” or red “X”
“spiders” and “connections” between them

ααn m n m

The Z and X spider

Used for compilation, simulation, error correction & more

Key benefit: Diagrammatic rewrites complete & more
comprehensible than circuits or matrices

1

Example: Entanglement (Van de Wetering)

| 0 ⟩
| 0 ⟩
| 0 ⟩
| 0 ⟩

H S

H S

2

Example: Entanglement (Van de Wetering)

[1 0 0 0 i 0 0 0 0 0 0 1 0 0 0 i]⊤

2

Example: Entanglement (Van de Wetering)

π
2

2

Qubits!

◦ Quantum computers use quantum bits or qubits.

◦ A qubit is represented in bra-ket notation.

◦ |0⟩ represents the “ket 0” state ((1, 0)T).

◦ |1⟩ represents the “ket 1” state ((0, 1)T).

◦ n qubit states can be expressed as |a1a2 . . . an⟩ which means
|a1⟩ ⊗ |a2⟩ ⊗ . . . |an⟩

◦ |+⟩, |−⟩ represents the X basis states (transform with hadamard
(H))

3

Qubits!

◦ Quantum computers use quantum bits or qubits.

◦ A qubit is represented in bra-ket notation.

◦ |0⟩ represents the “ket 0” state ((1, 0)T).

◦ |1⟩ represents the “ket 1” state ((0, 1)T).

◦ n qubit states can be expressed as |a1a2 . . . an⟩ which means
|a1⟩ ⊗ |a2⟩ ⊗ . . . |an⟩

◦ |+⟩, |−⟩ represents the X basis states (transform with hadamard
(H))

3

Qubits!

◦ Quantum computers use quantum bits or qubits.

◦ A qubit is represented in bra-ket notation.

◦ |0⟩ represents the “ket 0” state ((1, 0)T).

◦ |1⟩ represents the “ket 1” state ((0, 1)T).

◦ n qubit states can be expressed as |a1a2 . . . an⟩ which means
|a1⟩ ⊗ |a2⟩ ⊗ . . . |an⟩

◦ |+⟩, |−⟩ represents the X basis states (transform with hadamard
(H))

3

Qubits!

◦ Quantum computers use quantum bits or qubits.

◦ A qubit is represented in bra-ket notation.

◦ |0⟩ represents the “ket 0” state ((1, 0)T).

◦ |1⟩ represents the “ket 1” state ((0, 1)T).

◦ n qubit states can be expressed as |a1a2 . . . an⟩ which means
|a1⟩ ⊗ |a2⟩ ⊗ . . . |an⟩

◦ |+⟩, |−⟩ represents the X basis states (transform with hadamard
(H))

3

Quantum Qubit States

◦ A qubit can be in a superposition of states.

◦ For example, |ψ⟩ = α|0⟩+ β|1⟩, α, β ∈ C.

◦ The bra notation ⟨ψ| is equivalent to |ψ⟩T .

◦ When measuring a qubit, it collapses to either |0⟩ or |1⟩.
◦ The probability of measuring |0⟩ is |α|2.
◦ The probability of measuring |1⟩ is |β|2.
◦ The sum of probabilities is always 1: |α|2 + |β|2 = 1.

4

Quantum Qubit States

◦ A qubit can be in a superposition of states.

◦ For example, |ψ⟩ = α|0⟩+ β|1⟩, α, β ∈ C.

◦ The bra notation ⟨ψ| is equivalent to |ψ⟩T .

◦ When measuring a qubit, it collapses to either |0⟩ or |1⟩.
◦ The probability of measuring |0⟩ is |α|2.
◦ The probability of measuring |1⟩ is |β|2.
◦ The sum of probabilities is always 1: |α|2 + |β|2 = 1.

4

Quantum Qubit States

◦ A qubit can be in a superposition of states.

◦ For example, |ψ⟩ = α|0⟩+ β|1⟩, α, β ∈ C.

◦ The bra notation ⟨ψ| is equivalent to |ψ⟩T .

◦ When measuring a qubit, it collapses to either |0⟩ or |1⟩.
◦ The probability of measuring |0⟩ is |α|2.
◦ The probability of measuring |1⟩ is |β|2.
◦ The sum of probabilities is always 1: |α|2 + |β|2 = 1.

4

Quantum Qubit States

◦ A qubit can be in a superposition of states.

◦ For example, |ψ⟩ = α|0⟩+ β|1⟩, α, β ∈ C.

◦ The bra notation ⟨ψ| is equivalent to |ψ⟩T .

◦ When measuring a qubit, it collapses to either |0⟩ or |1⟩.
◦ The probability of measuring |0⟩ is |α|2.
◦ The probability of measuring |1⟩ is |β|2.
◦ The sum of probabilities is always 1: |α|2 + |β|2 = 1.

4

Quantum Circuit Model

◦ Quantum operations are represented as gates in a circuit model.

◦ Each gate acts on qubits, changing their states.

◦ Common gates include Hadamard (H), Pauli-X (X), Pauli-Y
(Y), and Pauli-Z (Z).

◦ Quantum circuits are read from left to right, and gates are
applied in sequence.

5

Quantum Circuit Model

◦ Quantum operations are represented as gates in a circuit model.

◦ Each gate acts on qubits, changing their states.

◦ Common gates include Hadamard (H), Pauli-X (X), Pauli-Y
(Y), and Pauli-Z (Z).

◦ Quantum circuits are read from left to right, and gates are
applied in sequence.

π
4π π π π

π
2

π
2

π
2≡

≡ Y

≡

T≡≡ X≡ Z

CNOT

5

Diagram Semantics

αn m =
| 0 ⟩ · · · | 0 ⟩ | 0 ⟩ · · · | 0 ⟩7→

| 1 ⟩ · · · | 1 ⟩ e iα | 1 ⟩ · · · | 1 ⟩7→

n m

n m

αn m =
| − ⟩ · · · | − ⟩ | − ⟩ · · · | − ⟩7→

| + ⟩ · · · | + ⟩ e iα | + ⟩ · · · | + ⟩7→

n m

n m

...

...

...

...

...

...

...

...

6

Diagram Semantics

7→

7→

7→

1
0
0
1

[
1 0 0 1

]

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

7

Diagram Semantics

D1 D2

D1

D2

7→

7→ [D1]⊗ [D2]

[D2]× [D1]

8

Rewriting Diagrams

α

β

.

..

...

.. ..

∝ α + β

..

..
..

..
∝

−α
.....

.

π

π

ππ

π

π

α
.....

. ∝
α

.....
.

α
.....

.∝

∝

∝∝ ∝ ∝2π 2π

Spider Fusion, The Hopf Rule, the Bi-pi Rule (Pi-Copy), Bi-hadamard Rule, the Bialgebra rule, and the
identity rule

9

Spider Fusion

Spider fusion allows us to merge same colored spiders as long as they
have one connection, adding their rotations together and connecting
any inputs or outputs from the initial two spiders to the final spider.

α

β

.

..

...

.. ..

∝ α + β

..

..
..

..

10

Hopf Rule

The hopf rule allows us to disconnect connections between opposite
color spiders that come in pairs of two. A consequence of this with
spider fusion is that n connections between opposite color spiders
can always be considered to be equivalent to n mod 2 connections
between those spiders.

∝

11

Bi-Pi Rule

The Bi-Pi rule allows us to add spiders of opposite colors with
rotation π to every input and output of a spider and flip the phase.

−α
.....

.

π

π

ππ

π

π

α
.....

. ∝

12

Bi-Hadamard Rule

The Bi-Hadamard rule allows us to add H-boxes to every input and
output to flip the color of the spider within

α
.....

.
α

.....
.∝

13

Bialgebra rule

The bialgebra rule is unique in that it is one of the few rules that can
introduce or remove swaps.

∝

14

Identity Removal

The identity removal rules allow us to remove spiders with k2π
rotations in general.

∝∝ ∝ ∝2π 2π

15

Rewriting Diagrams

Fusion can be used between the three connected X spiders here to
simplify our diagram.

=

16

Only Connectivity Matters

We can freely move spiders around, as long as their connections and
in/outputs remain the same

=

17

Example: Preparing a Bell Pair

| 0 ⟩

| 0 ⟩

H

18

Example: Preparing a Bell Pair

∝

∝ ∝ ∝

19

Example: Teleportation (Van de Wetering)

M

M

Z X

| 0 ⟩

| 0 ⟩

H H

bπ

aπ

bπ aπ

20

Example: Teleportation (Van de Wetering)

bπ

aπ

bπ aπ

→ bπ

aπ

bπ aπ

aπ

bπ aπ

→ bπ

aπ

bπ aπ

→ bπ → aπ bπ aπbπ → aπ aπ2bπ

→ aπ aπ → 2aπ →

21

Reasoning Tools

Unverified / Fully axiomatic:

◦ Quantomatic (https://quantomatic.github.io/)

◦ ZX Calculator (zx.cduck.me)

◦ Chyp

“Verify” by property testing:

◦ PyZX (https://github.com/Quantomatic/pyzx)

22

ZX Diagrams as string diagrams

α βn n mm

D1 D2

D1

D2

23

Inductive ZX Diagrams

To define our ZX diagrams, we take these string diagram
constructions and add Z and X spiders.

in out : N α : R

Z_Spider in out α : ZX in out

in out : N α : R

X_Spider in out α : ZX in out

Cap : ZX 0 2 Cup : ZX 2 0 Swap : ZX 2 2 Empty : ZX 0 0

zx1 : ZX in mid zx2 : ZX mid out

Compose zx1 zx2 : ZX in out Wire : ZX 1 1

zx1 : ZX in1 out1 zx2 : ZX in2 out2

Stack zx1 zx2 : ZX (in1 + in2) (out1 + out2) Box : ZX 1 1

24

Semantics

To verify transformations on diagrams, we introduce a system of
semantics. Our semantics system will rely on QuantumLib.

Z_Spider n m α 7→

1 · · · 0
...

. . . 0
0 0 e iα

X_Spider n m α 7→ H⊗m ×

1 · · · 0
...

. . . 0
0 0 e iα

× H⊗n

25

More Semantics

Cap 7→
[
1 0 0 1

]
Cup 7→

[
1 0 0 1

]⊤

Swap 7→

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Empty 7→

[
1
]

Wire 7→ I2×2

Box 7→ H

Compose zx1 zx2 7→ semantics(zx2)× semantics(zx1)

Stack zx1 zx2 7→ semantics(zx1)⊗ semantics(zx2) 26

Proportionality

Equivalence in ZX is up to constant factor

We define proportionality and use symbol ∝:

∃c ̸= 0 : semantics(zx1) = c ∗ semantics(zx2) =⇒ zx1 ∝ zx2

Allows Coq’s rewriting capabilities in our proofs about diagrams

27

Why semantics?

◦ Smaller TCB

◦ Interoperability

We can ingest quantum circuits using sqir
Circuit structure is very different
Convert circuit components
Prove equivalence through ground truth

◦ VyZX can calculate results

28

Why semantics?

◦ Smaller TCB

◦ Interoperability

We can ingest quantum circuits using sqir
Circuit structure is very different
Convert circuit components
Prove equivalence through ground truth

◦ VyZX can calculate results

28

Why semantics?

◦ Smaller TCB

◦ Interoperability

We can ingest quantum circuits using sqir
Circuit structure is very different
Convert circuit components
Prove equivalence through ground truth

◦ VyZX can calculate results

28

Three Proof Strategies

1. Proof through semantics

∝∝

2. Inductive proof

βα
...

...
... m o n∝ α + β

...
... on

3. Diagrammatic proof

∝

29

Three Proof Strategies

1. Proof through semantics

∝∝

2. Inductive proof

βα
...

...
... m o n∝ α + β

...
... on

3. Diagrammatic proof

∝

29

Three Proof Strategies

1. Proof through semantics

∝∝

2. Inductive proof

βα
...

...
... m o n∝ α + β

...
... on

3. Diagrammatic proof

∝

29

Three Proof Strategies

1. Proof through semantics

∝∝

2. Inductive proof

βα
...

...
... m o n∝ α + β

...
... on

3. Diagrammatic proof

∝

29

Other representation

n α
...

... o

=̂

30

2. Inductive proof: Absolute Fusion

βα
...

...
... m o n∝ α + β

...
... on

The lemma:

Let’s induct over m

31

2. Inductive proof: Absolute Fusion

βα
...

...
... m o n∝ α + β

...
... on

Base case:

Solve with matrix semantics!

31

2. Inductive proof: Absolute Fusion

βα
...

...
... m o n∝ α + β

...
... on

Inductive step:

Let’s split out nodes to reduce size

31

2. Inductive proof: Absolute Fusion

βα
...

...
... m o n∝ α + β

...
... on

Idea: Fuse the small spiders. Problem: Association

31

2. Inductive proof: Absolute Fusion

βα
...

...
... m o n∝ α + β

...
... on

Reassociated diagram

Let’s fuse the small spiders
31

2. Inductive proof: Absolute Fusion

βα
...

...
... m o n∝ α + β

...
... on

Upper spiders are fused

Apply identity rule, remove wires

∝∝

31

2. Inductive proof: Absolute Fusion

βα
...

...
... m o n∝ α + β

...
... on

Diagram now corresponds to the IH

31

2. Inductive proof: Absolute Fusion

βα
...

...
... m o n∝ α + β

...
... on

Qed.

31

3. Diagrammatic proof: Bell pair preparation

∝

The lemma:

Let’s first swap colors on the left 32

3. Diagrammatic proof: Bell pair preparation

∝

Let’s reassociate!

32

3. Diagrammatic proof: Bell pair preparation

∝

Let’s fuse

32

3. Diagrammatic proof: Bell pair preparation

∝

Separate the red node to fuse
32

3. Diagrammatic proof: Bell pair preparation

∝

Let’s fuse the red spiders
32

3. Diagrammatic proof: Bell pair preparation

∝

Apply identity rule, remove wires

∝∝
32

3. Diagrammatic proof: Bell pair preparation

∝

Diagram now corresponds to the a cap

32

3. Diagrammatic proof: Bell pair preparation

∝

Qed.

32

Quantum circuit ingestion from RzQ gate set

n < q : N

H n : Circuit q q

n < q : N

X n : Circuit q q

n < q : N α : R

Rz(α) n : Circuit q q

c,n < q : N

CNOT c n : Circuit q q

q : N c1, c2 : Circuit q q

Compose c1 c2 : Circuit q q

33

Quantum circuit ingestion from RzQ gate set

n < q : N

H n : Circuit q q

n < q : N

X n : Circuit q q

n < q : N α : R

Rz(α) n : Circuit q q

c,n < q : N

CNOT c n : Circuit q q

q : N c1, c2 : Circuit q q

Compose c1 c2 : Circuit q q

∝Rz(α) α

H

X π∝

∝

CNOT ∝

33

Quantum circuit ingestion from RzQ gate set

n < q : N

H n : Circuit q q

n < q : N

X n : Circuit q q

n < q : N α : R

Rz(α) n : Circuit q q

c,n < q : N

CNOT c n : Circuit q q

q : N c1, c2 : Circuit q q

Compose c1 c2 : Circuit q q

∝Rz(α) α

H

X π∝

∝

CNOT ∝

..

...
.

..

...
.

..

...
.

n

n + 1

1

c
c − 1

n + 2

c + 1

q
33

Discussion

◦ Any ZX diagram can be expressed

◦ Multiple ways to encode

◦ Deal with associativity information

◦ Dimensionality issues

34

How can I verify my graphical language?

◦ Find underlying categorical structure

◦ Formally extend structure

◦ Translate into proof assistant

◦ Deal with resulting associtativity issues

35

Future work

◦ Restore connection information

◦ Verify ZX-based compiler

◦ Prove ZX results

36

Summary

◦ Defined ZX diagrams inductively

◦ Inspired by string diagrams

◦ Multiple proof strategies

◦ ZX calculus is interesting!

Find VyZX on GitHub
https://github.com/inQWIRE/VyZX

arXiv
Coming soon...

37

https://github.com/inQWIRE/VyZX

References

Bob Coecke and Aleks Kissinger, Picturing quantum processes:
A first course in quantum theory and diagrammatic reasoning,
Cambridge University Press, 2017.

Jonathan Castello, Patrick Redmond, and Lindsey Kuper,
Inductive diagrams for causal reasoning, 2023.

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and
Michael Hicks, A verified optimizer for quantum circuits, Proc.
ACM Program. Lang. 5 (2021), no. POPL.

John van de Wetering, Zx-calculus for the working quantum
computer scientist, 2020.

38

