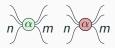
VyZX

Formal Verification of a Graphical Language

Adrian Lehmann Benjamin Caldwell Bhakti Shah Robert Rand

Department of Computer Science University of Chicago Presented at MWPLS'23 ... is a graphical language for reasoning about quantum systems ZX diagrams are open graphs consisting of green "Z" or red "X" "spiders" and "connections" between them



The Z and X spider

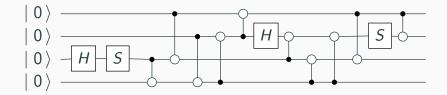
... is a graphical language for reasoning about quantum systems ZX diagrams are open graphs consisting of green "Z" or red "X" "spiders" and "connections" between them



The Z and X spider

Used for compilation, simulation, error correction & more Key benefit: Diagrammatic rewrites complete & more comprehensible than circuits or matrices

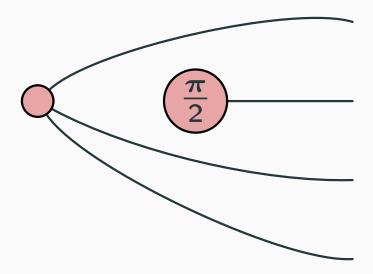
Example: Entanglement (Van de Wetering)



Example: Entanglement (Van de Wetering)

$[1 \ 0 \ 0 \ 0 \ i \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ i]^{\top}$

Example: Entanglement (Van de Wetering)

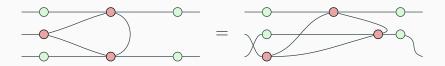


Rewriting Diagrams



Spider Fusion, The Hopf Rule, the Bi-pi Rule (Pi-Copy), Bi-hadamard Rule, the Bialgebra rule, and the identity rule

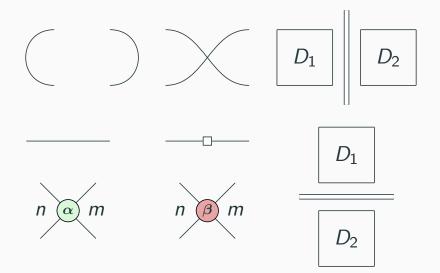
We can freely move spiders around, as long as their connections and in/outputs remain the same



Unverified / Fully axiomatic:

- Quantomatic (https://quantomatic.github.io/)
- ZX Calculator (zx.cduck.me)
- \circ Chyp
- "Verify" by property testing:
 - PyZX (https://github.com/Quantomatic/pyzx)

ZX Diagrams as string diagrams



To define our ZX diagrams, we take these string diagram constructions and add Z and X spiders.

in out : \mathbb{N} α : \mathbb{R}	in out :	\mathbb{N} $\alpha : \mathbb{R}$
Z_Spider in out α : ZX in out	X_Spider in (out α : ZX in out
Cap : ZX 0 2 Cup : ZX 2 0	Swap : ZX 2 2	Empty : ZX 0 0
zx1 : ZX in mid zx2 : ZX mid out		
Compose zx1 zx2 : ZX in ou	it	Wire : ZX 1 1
zx1 : ZX in1 out1 zx2 :	ZX in2 out2	
Stack zx1 zx2 : ZX (in1 + in2)	(out1 + out2)	Box : ZX 1 1

To verify transformations on diagrams, we introduce a system of semantics. Our semantics system will rely on QuantumLib.

More Semantics

$$egin{array}{c} {
m Cap} \mapsto egin{bmatrix} 1 & 0 & 0 & 1 \ \\ {
m Cup} \mapsto egin{bmatrix} 1 & 0 & 0 & 1 \ \\ 1 & 0 & 0 & 0 \ \\ 0 & 0 & 1 & 0 \ \\ 0 & 1 & 0 & 0 \ \\ 0 & 0 & 0 & 1 \ \end{bmatrix}^{ op} \ \\ {
m Empty} \mapsto egin{bmatrix} 1 \ \\ 1 \ \\ {
m Wire} \mapsto I_{2 imes 2} \ \\ {
m Box} \mapsto H \end{array}$$

 $\begin{array}{l} \texttt{Compose } \texttt{zx1} \texttt{zx2} \mapsto \texttt{semantics}(\texttt{zx2}) \times \texttt{semantics}(\texttt{zx1}) \\ \texttt{Stack } \texttt{zx1} \texttt{zx2} \mapsto \texttt{semantics}(\texttt{zx1}) \otimes \texttt{semantics}(\texttt{zx2}) \end{array}$

Equivalence in ZX is up to constant factor We define proportionality and use symbol ∞ :

 $\exists c \neq 0 : \text{semantics}(zx1) = c * \text{semantics}(zx2) \implies zx1 \propto zx2$

Allows Coq's rewriting capabilities in our proofs about diagrams

- \circ Smaller TCB
- \circ Interoperability

- $\circ \ \, \text{Smaller TCB}$
- \circ Interoperability

We can ingest quantum circuits using sqir Circuit structure is very different Convert circuit components Prove equivalence through ground truth

- \circ Smaller TCB
- \circ Interoperability

We can ingest quantum circuits using sqir Circuit structure is very different Convert circuit components Prove equivalence through ground truth

• VyZX can calculate results

Three Proof Strategies

1. Proof through semantics

Three Proof Strategies

1. Proof through semantics

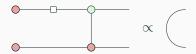
2. Inductive proof

Three Proof Strategies

1. Proof through semantics

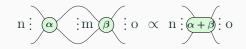
2. Inductive proof

3. Diagrammatic proof

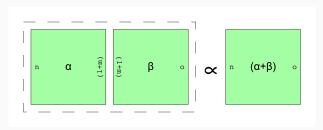


2. Inductive proof

Other representation



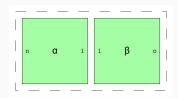
The lemma:



Let's induct over m

$$n \stackrel{!}{=} \alpha \stackrel{!}{=} m \beta \stackrel{!}{=} o \propto n \stackrel{!}{=} \alpha + \beta \stackrel{!}{=} o$$

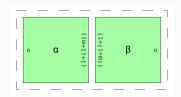
Base case:



Solve with matrix semantics!

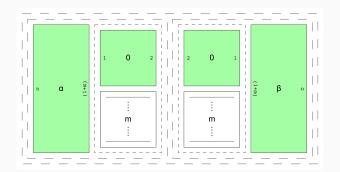
$$n \stackrel{!}{:} \alpha \stackrel{!}{:} m \beta \stackrel{!}{:} o \propto n \stackrel{!}{:} \alpha + \beta \stackrel{!}{:} o$$

Inductive step:



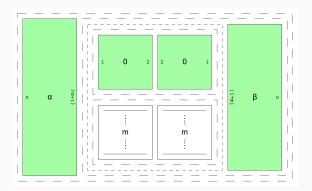
Let's split out nodes to reduce size

$$n \stackrel{!}{=} \alpha \stackrel{!}{=} m \beta \stackrel{!}{=} o \propto n \stackrel{!}{=} \alpha + \beta \stackrel{!}{=} o$$



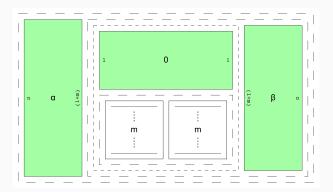
Idea: Fuse the small spiders. Problem: Association

Reassociated diagram



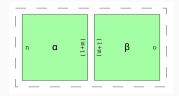
Let's fuse the small spiders

Upper spiders are fused



Apply identity rule, remove wires

Diagram now corresponds to the IH



Qed.

- $\circ\,$ Any ZX diagram can be expressed
- $\circ~$ Multiple ways to encode
- $\circ~$ Deal with associativity information
- $\circ~$ Dimensionality issues

- $\circ~$ Find underlying categorical structure
- $\circ~$ Formally extend structure
- $\circ~\mbox{Translate}$ into proof assistant
- $\circ~$ Deal with resulting associtativity issues

- $\circ~\mbox{Restore}$ connection information
- Verify ZX-based compiler
- \circ Prove ZX results

- $\circ~$ Defined ZX diagrams inductively
- $\circ~$ Inspired by string diagrams
- Multiple proof strategies
- $\circ~$ ZX calculus is interesting!

Find VyZX on GitHub

https://github.com/inQWIRE/VyZX

arXiv

Coming soon...

- Bob Coecke and Aleks Kissinger, *Picturing quantum processes: A first course in quantum theory and diagrammatic reasoning*, Cambridge University Press, 2017.
- Jonathan Castello, Patrick Redmond, and Lindsey Kuper, *Inductive diagrams for causal reasoning*, 2023.
- Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks, A verified optimizer for quantum circuits, Proc. ACM Program. Lang. 5 (2021), no. POPL.
- John van de Wetering, *Zx-calculus for the working quantum computer scientist*, 2020.